

Urine Variability Compromises β-Glucuronidase Performance Causing Inaccurate Drug Quantitation

<u>Amanda C. McGee^{1*}</u> P. Nikki Sitasuwan¹ • John J. Tomashek¹ • Caleb R. Schlachter¹ Ana C. Grenier² • Lawrence J. Andrade² • L. Andrew Lee¹

¹Integrated Micro-Chromatography Systems, Inc., Irmo, South Carolina ²Dominion Diagnostics, LLC., North Kingstown, Rhode Island

Introduction and Background

- β-glucuronidase is used to remove glucuronic acid from phase II metabolites present in biological fluids to improve detection sensitivity.
- Result accuracy depends on the enzyme hydrolysis efficiency, which varies among different enzyme sources.
- Enzyme hydrolysis efficiency varies in different patient urine samples.
- We present data to show human urine samples impact enzyme hydrolysis efficiency of different β-glucuronidases.

Materials & Methods

- Negative Urine Controls:
 - Surine[™] (DTI)
 - Synthetic Urine Solution (RICCA)
 - Certified Drug-Free Human Urine (UTAK)
- Patient Samples:
 - Analyzed samples were a subset of those submitted for drug screening at Dominion Diagnostics
 - pH ranged from 4.6 to 9.8
 - Specific gravity ranged from 1.006 to 1.0029
 - Creatinine ranged from 3.5 to 400
 - Patient samples were assigned randomly generated ID numbers
 - Patient samples were aliquoted and fortified with a known concentration (500 ng/mL) of oxymorphone, hydromorphone and codeine glucuronides.

- Purified Enzymes
 - IMCSzyme[®] RT
 - Brachyspira pilosicoli (Enzyme B)
 - Patella vulgata (Enzyme C; limpets)
- Standards (Cerilliant)
 - oxymorphone, oxymorphone-D3, oxymorphone glucuronide
 - hydromorphone, hydromorphone-D3, hydromorphone glucuronide
 - codeine, codeine-D6, codeine glucuronide
 - Five-point calibration curves were prepared (in Surine) using a linear fit for each analyte. Correlation coefficients (R²) were ≥ 0.99.
 - Calibration controls were within ± 20% deviation of the target values.

Analyte Fortification Confirmation

- Wanted to confirm the amount of analyte that was fortified into urine samples because some samples are positive for endogenous drug.
- Unfortified and fortified urine samples were hydrolyzed using <u>excess</u> enzyme and <u>prolonged</u> incubation time.
- 20 μL of IMCSzyme RT (<u>4x recommended volume</u>) for 2 hours at room temperature (<u>8x recommended incubation time</u>).
- After hydrolysis, glucuronide peaks were not distinguishable from baseline level, compared to unhydrolyzed samples.

Analyte Fortification Confirmation

Figure 1. Analyte fortification check recovery of 19 patient samples which were hydrolyzed with 20 μL of IMCSzyme RT and incubated for 2 hours (a). Analyte recovery was averaged between the 19 patient samples and were within ± 20% of nominal value (b).

Sample Hydrolysis, Clean-up and Analysis

Table 1. Recommended hydrolysis conditions.

				Master Mix			
	Urine sample (50 μL)	5 μL of Purified Enzyme (protein amount)		Optimal Hydrolysis Buffer (150 μL)		Internal Standard in Methanol	Reaction Volume
	Unfortified samples	IMCSzyme [®] RT	(11 µg)	pH 5.5			215 μL
	or	or Enzyme B	(11 µg)	pH 6.5		10 µL	
	Fortified samples	or Enzyme C	(1.8 µg)	pH 4.5			
Jrine (50 μL) • Master Mix (165μL)	ncubate for 15 minutes at room temperature (20.5 ± 1°C)	WAX/RP dispersive p extraction and elu (400 μL of 1% formi in acetonitrile	pipette tion c acid)	Solvent evaporation	(50 40	Reconstitute μL of methanol and 0 μL of 0.1% formic acid in water)	Inject samples LC-MS/MS (10 of diluted sam

integrated micro-chromatography systems

Figure 2. Schematic representation of sample hydrolysis, clean-up and analysis.

Recommended Hydrolysis Condition Comparison

- 19 patient samples that contained < 1000 ng/mL of oxymorphone, hydromorphone, and codeine were selected.
- Aliquots of each sample were fortified with 500 ng/mL of each glucuronidated analyte.
- Fortified and unfortified samples were hydrolyzed under recommended hydrolysis conditions using IMCSzyme[®] RT, Enzyme B or Enzyme C.

Fortified Analyte Recovery = Fortified Samples – Unfortified Sample(ng/mL)(ng/mL)

IMCSzyme[®] RT Results

Figure 3. Fortified analyte recovery in 19 patient samples using IMCSzyme RT under recommended hydrolysis conditions (**a**). Average of fortified analyte recoveries of 19 patient samples using IMCSzyme RT (**b**).

Enzyme B Results

Figure 4. Fortified analyte recovery in 19 patient samples using Enzyme B under recommended hydrolysis conditions (**a**). Average of fortified analyte recoveries of 19 patient samples using Enzyme B (**b**).

Enzyme C Results

Figure 5. Fortified analyte recovery in 17 patient samples using Enzyme C under recommended hydrolysis conditions (**a**). Average of fortified analyte recoveries of 17 patient samples using Enzyme C (**b**). *Enzyme C is missing data from two samples due to limited sample volume.

Fortified Sample Comparison

Low % RSD indicates higher hydrolysis consistency across different samples.

Comparing enzyme performance in three urine controls, IMCSzyme RT showed the lowest % RSD, followed by Enzyme B and Enzyme C. IMCSzyme RT was the only enzyme to achieve > 90% hydrolysis of 5,000 ng/mL fortified glucuronides.

% RSD of hydrolysis efficiency in patient samples increased for all enzymes, however **IMCSzyme RT** was the only one with < 20 % RSD.

Figure 6. Average hydrolysis recovery of analytes fortified in two synthetic urines and one certified human drug-free urine (**a**, **c**, **e**) or in patient samples (**b**, **d**, **f**).

Enzyme B Compared to IMCSzyme RT

While 1 sample was within ± 20% deviation (no significant difference), 58 patients reported significantly lower oxymorphone using Enzyme B than IMCSzyme RT.

Figure 7: Enzyme B oxymorphone recovery compared to IMCSzyme RT from 59 patient samples. Red dotted line (---) indicates ± 20% deviation.

Oxymorphone Quantitation Comparing Two Enzymes

90 patient sample results:

In Agreement

- 26 samples were found to be positive by both enzymes
- 31 samples were found to be negative by both enzymes

In Disagreement -

- None of the samples that were positive by Enzyme B were negative by IMCSzyme RT
- 33 samples disagreed where they were positive by IMCSzyme RT but negative by Enzyme B

Table 2. IMCSzymEnzyme B positiveor negative (< 100results from hydro	e RT and (> 100 ng/mL) ng/mL) olyzing 90	Enzyme B Hydrolysis			
patient samples. S were not fortified glucuronidated dr	Samples with ug.	> 100 ng/mL	< 100 ng/mL		
rme RT olysis	> 100 ng/mL	26	33		
IMCSzy Hydro	< 100 ng/mL	0	31		

Conclusions

- Different chemicals in heterogenous urine samples can negatively impact β-glucuronidase hydrolysis efficiency
- β-Glucuronidase performance in synthetic urine does not reflect performance in clinical samples
- Enzyme B and Enzyme C do NOT hydrolyze consistently in every sample and could produce false negative results
- IMCSzyme[®] RT offers more consistent performance in clinical samples
- Future work is to identify and characterize enzyme inhibitors in urine

Disclosure

Amanda McGee, Nikki Sitasuwan, John Tomashek, Caleb Schlachter and Andrew Lee are employees of Integrated Micro-Chromatography Systems, Inc.

References

McGee AC, Sitasuwan PN, Tomashek JJ, Schlachter CR, Lee LA. (2019). Rapid room temperature hydrolysis of glucuronidated drugs of abuse using IMCSzyme[®] RT. Annual Meeting, Society of Forensic Toxicologists, San Antonio, TX. October 13-18 2019.

Contact Information

For more information on IMCSzyme® RT contact: inquiries@imcstips.com

Follow us on LinkedIn:

https://www.linkedin.com/company/integrated-micro-chromatography-systems-imcs/

